
Thermal dimerization of 2,2-difluoro enol silyl ethers led
to 3,3,4,4-tetrafluorocyclobutanes. The [2+2] cycloaddition pro-
ceeded in a “head-to-head” fashion to afford the cyclobutanes
containing the trans and cis stereoisomers.  The cyclobutanes
were transformed to tetrafluorocyclobutane-1,2-diols by desily-
lation.

Fluorine containing cyclobutanes are interesting precursors
for bioactive compounds or functionalized polymers.1–3

Thermal [2+2] cycloaddition is one of the well-known methods
to produce cyclobutanes from α,α-difluoroolefins.4–7 However,
there is no report on tetrafluorocyclobutanediol.  Herein, we
report the thermal dimerization of 2,2-difluoro enol silyl ethers
2 to give 3,3,4,4-tetrafluorocyclobutane-1,2-diols derivatives 3,
which are considered to be promising bifunctional molecules
possessing two silyl-protected hydroxyl functionalities. 

Recently, we have reported Mg(0)-promoted selective
defluorination of readily available trifluoromethyl ketones 1 in
the presence of chlorotrimethylsilane by means of a process
involving C−F bond cleavage (Scheme 1),8,9 which provides an
easy access to a variety of 2,2-difluoro enol silyl ethers 2.

The preparation procedure of cyclobutanes 3 from 2 is very
simple.  Heating neat 2a under an Ar atmosphere at 110 °C for
6 h10 gave a mixture of trans and cis isomers of 3a in good
yield (Table 1).  On heating 2 in air at the same temperature,
however, a complex mixture of no fluorine containing com-
pounds was obtained as strong yellow and high viscous oil.

The intermolecular [2+2] cycloaddition of 2 proceeded pre-
dominantly in a head-to-head fashion.  It is well-known that the
thermal [2+2] cycloaddition reactions of fluoroolefins proceed
via radical intermediates.5–7 The preference for the head-to-
head adduct formation can be explained by assuming that the
ring open-chain biradical intermediates generated from radical
coupling at the 2-positions (head-to-head coupling) of 2, are
much more stable than that of head-to-tail coupling due to the
stabilization of both of the radical centers of the intermediates
by the aromatic and siloxy group.

Other examples of formation of 3 are given in Table 1.

The enol ethers 2 that possess either electron-withdrawing
(entry 2) and electron-donating (entry 3) on the aryl ring pro-
vided 3 in good yields.  In all cases, the cyclobutanes 3 were
obtained as a mixture of trans and cis isomers in an approxi-
mate ratio 1:1. The diastereomeric mixture of 3 was separable
by column chromatography on silica gel.11 When the enol silyl
ether 2a was heated at 150 °C for 6 h, trans and cis-3a were
obtained in 54% yield in a ratio of 10:1, indicating that thermal
decomposition of cis-3a took place.  In fact, the compounds of
trans- and cis-3a showed different thermal stability at high tem-
perature.  On thermogravimetric analysis (TGA) for each iso-
mers under nitrogen atmosphere, the weight loss of cis-3a start-
ed at 115 °C, whereas no weight loss up to 150 °C in the case of
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trans-3a.
Besides the thermograms, the X-ray crystal structure analy-

ses of trans- and cis-3b12 also suggest the weakness of
C(1)–C(2) bond since the bond lengths of C(3)–C(4) (1.52 Å
(trans-3b) and 1.52 Å (cis-3b)) are shorter and the lengths of
C(1)–C(2) (1.60 Å (trans-3b) and 1.63 Å (cis-3b)) are longer
as compared with the reported average bond lengths of cyclobu-
tanes (1.55 Å).  As shown in Figure 1, cis-3b has a more
strained 4-membered ring structure than trans-3b; the bond
length of C(1)–C(2) of cis-3b (1.63 Å) is slightly longer than
that of trans-3b (1.60 Å), and the longer C(1)–C(2) bond length
in cis-3b would result in potentially reducing the thermal stabil-
ity of cis-3. 

Compound 3 could be converted into diol 4 (Scheme 2).
Desilylation for 3a with tetrabutylammonium fluoride (TBAF)
was achieved at –80 °C for 2 h.13 Different reactivity on this
reaction was observed for trans and cis-3a.  Desilylation with
TBAF for cis-3a was faster than trans-3a.  The higher reactivity
of cis-3a is consistent with the result of TGA and X-ray analy-
ses.  Furthermore, ketone 5 was obtained from diol cis-4a (63%
isolated yield) by treating with silica gel and Na2SO4 in Et2O at
room temperature for 12 h.14 On the other hand, diol trans-4a
was scarcely converted to 5 under such conditions. 

In summary, we have prepared tetrafluorocyclobutanes by
thermal [2+2] dimerization of difluoro enol silyl ethers.  The
dimers were consisting of trans and cis stereoisomers.  TMS
deprotection of the dimers led to diols that could be derived to a
wide range of 4-membered ring containing materials.
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